Renewable Energies

Albert Ho, Alexander Lincoln, & Ashley Morehead

Topics

- Geothermal Energy
- Hydrogen
- Biofuels
- Wind Power
- Solar Energy
- Hydropower & Ocean Energy

Geothermal Energy

- Heat is generated in the earths mantle and core via radioactive decay
- Heat is transferred to water and rock in the earth's crust by mantle convection
- The hot water is pumped from the ground and used to drive

Types of Geothermal Plants

- Sustainable
- High energy potential
- Very low emissions
- Economically competitive
- Small footprint

- Can quench wells
- High upstart cost
- Limited by location

http://www.energy.ca.gov/tour/geysers/

Hydrogen

- Most abundant element in the universe
- Produced by:
 - o steam reforming
 - o electrolysis of water
- Can be used as a fuel source or an energy carrier

As a Fuel Source

- Burned to drive mechanical work
- Passed through a fuel cell to generate electricity

http://www.pbs.org/wgbh/nova/sciencenow/3210/01-car-nf.html

https://mix.msfc.nasa.gov/abstracts.php?p=2388

As an Energy Carrier

- Electricity from a primary source is used to electrolyze water
- Hydrogen gas produced can be stored and transported
- Hydrogen gas is passed through a fuel cell when elec

Near zero emissionsAbundant

- Hard to store
- Extremely flammable
- Greenness dependent on primary energy source
- Fuel cell cost
- Low density

Biofuels

- Derived from biomass
- Can be directly converted into liquid fuels
- Highly renewable

Bagasse

Corn stover

Switchgrass

Sorghum

http://www2.hawaii.edu/~khanal/biofuel/2nd_gen.png

Process

- Harvest
- Enzyme breakdown
- Fermentation
- Separation
- Transportation
- Repeat

http://news.illinois.edu/WebsandThumbs/jin_yong _su/BioenergyChain_b.jpg

- Can reduce carbon dioxide emissions
- Liquid fuel
- Cheap feedstock

- Not as efficient
- Expensive process
- Plant consumption
- Use of fertilizers
- Water use

Wind Power

- Power is derived from airflow using wind turbines
- Wind > Mechanical > Electricity
- Three major types
 Outility-scale wind
 Small wind
 - o Small wind
 - o Offshore wind

http://cleangreenenergyzone.com/wpcontent/uploads/2010/11/wind-farms-picture.jpg

Turbine - How it works

Pathway

- Wind
- Blades
- Shaft
- Gear box
- Generator

http://windeis.anl.gov/guide/basics/turbine.html

• Clean

Low maintenanceConserves water

http://www.awea.org/Resources/Content.aspx?ItemNumber=5097

- Dependent on wind
- Location limited
- High capital costs
- Noise from turbines

Solar Energy

- Light and heat harnessed from the Sun using modern technology
- Clean and extremely abundant
- Two ways of being captured and converted into

electricity

http://www.pv-magazine.com/news/details/beitrag/global-solar-pv-demand-to-reach-49-gw-in-2014--say-npd-solarbuzz_100013796/#axzz3Yf1gaBiU

Solar Thermal

Solar PV

http://epa.gov/climatestudents/solutions/technologies/solar.html

- Indefinitely renewable
- Silent
- Many applications

- Expensive
- Intermittent
- Location

http://www.datamath.org/BASIC/LCD_Modern/TI-108_C0888.htm http://science.nasa.gov/science-news/science-at-nasa/2008/31jul_solarsails/

Hydropower & Ocean Energy

- Taking energy from water and converting it to power
 Hydro, wayo, tidal, and thermal (OTEC)
- Hydro, wave, tidal, and thermal (OTEC)

http://inhabitat.com/portugal-wavepower-plant-goes-live/

Hydropower

- From the energy of moving water
- Nation's largest source of renewable electricity

http://epa.gov/climatestudents/solutions/technologies/water.html

http://www.triplepundit.com/2011/03/hydropower-expansion-hydropower-improvement-act-2011/

Wave & Tidal Energy

- Harnesses energy from waves and tides to create power
- Waves power uses a wave energy converter (WEC) as waves rise and fall
- Tidal power uses turbines as tides rush in and out of the coast

Upper float lowered in trough of wave

Upper float elevated on crest of wave

http://technologystudent.com/images5/tidal1.gif

http://searaser.net/

- Green/Clean
- Huge energy potential
- Reliability

- Costs
- Effect on marine life and surrounding environment
- Location

Ocean Thermal Energy Conversion

- Harness solar energy absorbed by the ocean
- Open cycle, closed cycle, & hybrid

Advantages

- Uses clean, renewable, natural resources
- Can produce fresh water in addition to electricity
- Reduced dependence on fossil fuels

Disadvantages

- Needs a large difference in temperature
- Transmitting energy big distances
- Present cost

Conclusion

• There is no single solution to

• A combination of these

meet the world's ener

• Fossil fuels remain the most

		Comparison of LACE - LCOE (2012 \$/MWh)				
		Average	Average	Average		
	Plant Type	LCOE	LACE	Difference	Range of	Differences
	2019					
	Dispatchable Technologies					
	Conventional Coal	95.6	62.2	-33.5	-48.9	-25.1
	IGCC	115.9	62.2	-53.7	-66.1	-43.9
	IGCC with CCS	147.4	62.0	-85.4	-104.7	-74.8
	Natural Gas-fired					
	Conventional Combined Cycle	66.3	62.9	-3.4	-13.7	0.0
ener	Advanced Combined Cycle	64.4	62.9	-1.5	-11.2	0.8
	Advanced CC with CCS	91.3	62.9	-28.4	-34.6	-23.7
	Advanced Nuclear	86.1	61.7	-24.4	-33.0	-13.0
	Geothermal	44.5	60.9	16.4	15.2	18.1
	Biomass	102.6	63.3	-39.3	-57.2	-28.5
econ	Non-Dispatchable Technologies					
	Wind	80.3	55.7	-24.5	-37.6	-6.3
	Wind – Offshore	204.1	62.3	-141.8	-210.1	-107.1
	Solar PV	118.6	73.4	-45.2	-96.5	-21.2
	Solar Thermal	223.6	73.3	-150.3	-279.3	-83.4
	Hydro	84.5	59.9	-24.6	-54.7	-1.0

http://www.eia.gov/forecasts/aeo/electricity_generation.cfm

Acknowledgments

- Ladislaus Rybach, Geothermal Sustainability, Geo-Heat Centre Quarterly Bulletin (September 2007), <u>http://geoheat.oit.edu/bulletin/bull28-3/art2.pdf</u> (accessed April 25, 2015)
- U.S. Department of Energy Office of Energy Efficiency & Renewable Energy. <u>http://energy.gov/eere/geothermal/electricity-generation</u> (accessed April 25,2015)
- Duffield, W. A.; Sass, J. H. Geothermal Energy-Clean Power From the Earth's Heat <u>http://pubs.usgs.gov/circ/2004/c1249/</u> (accessed April 25,2015)
- U.S. Energy Information Administration www.eia.gov/forecasts/aeo/electricity_generation.cfm (accessed April 25, 2015)
- U.S. Department of Energy Office of Energy Efficiency & Renewable Energy. <u>http://energy.gov/eere/fuelcells/hydrogen-production-natural-gas-reforming</u> (accessed April 25, 2015)
- U.S. Environmental Protection Agency.

http://epa.gov/climatestudents/solutions/technologies/solar.html (accessed April 26, 2015)

- Steijn, Robert. Dynamic Tidal Power Technology Advances. (January 2015) renewableenergyworld.com/rea/news/article/2015/01 (accessed April 27, 2015)
- National Renewable Energy Laboratory. (February 2015) <u>http://www.nrel.gov/learning/re_biofuels.html</u> (accessed April 26, 2015)
- American Wind Energy Association (2013)

http://www.awea.org/Resources/Content.aspx?ItemNumber=900 (accessed April 26, 2015)